Model Setup & Training

Train and Test

Assuming your data is in tnt format you can encode the data ane train a indictrans.trunk.StructuredPerceptron classifier.

from indictrans import trunk
#load trianing data
X, y = trunk.load_data('indictrans/trunk/tests/hin2rom.tnt')
#build ngram-context
X = trunk.build_context(X, ngram=4)
#fit encoder
enc, X = trunk.fit_encoder(X)
#train structured-perceptron model
clf = trunk.train_sp(X, y, n_iter=5, verbose=2)
Iteration 1 ...
Train-set error = 1.5490
Iteration 2 ...
Train-set error = 1.0040
Iteration 3 ...
Train-set error = 0.8030
Iteration 4 ...
Train-set error = 0.6900
Iteration 5 ...

This will train the perceptron for 5 epochs (specified via the n_iter parameter).

Then you can use the trained classifier as follows:

#load testing data
X_test, y = trunk.load_data('indictrans/trunk/tests/hin2rom.tnt')
#build ngram-context for testing data
X_test = trunk.build_context(X_test, ngram=4) # ngram value should be same as for train-set
#encode test-set
X_test = [enc.transform(x) for x in X_test]
#predict output sequences
y_ = clf.predict(X_test)
y[10]  # True
[u'c', u'l', u'a', u'ne', u'_']
>>> y_[10]  # Predicted
[u'c', u'l', u'a', u'n', u'_']
>>> y_[100]  # True
[u'p', u'a', u'r', u'aa', u'n', u'd', u'e']
>>> y_[100]  # Predicted
[u'p', u'a', u'r', u'aa', u'n', u'd', u'e']

Note that you need to build-context using the same ngram value as used for trainig data. Also you need to encode test data using the encoder enc developed on training data.

Train directly from Console

indictrans-trunk provides a much easier way to train, test and save models directly from console.

user@indic-trans$ indictrans-trunk --help

-d , --data-file      training data-file: set of sequences
-o , --output-dir     output directory to dump trained models
-n , --ngrams         ngram context for feature extraction: default 4
-e , --lr-exp         The Exponent used for inverse scaling oflearning rate:
                      default 0.1
-m , --max-iter       Maximum number of iterations for training: default 15
-r , --random-state   Random seed for shuffling sequences within each
                      iteration.
-l , --verbosity      Verbosity level: default 0 (quiet moe)
-t , --test-file      testing data-file: optional: stores output sequences
                      in test_file.out

user@indic-trans$ indictrans-trunk -d hin2rom.tnt -o /tmp/rom-ind/ -n 4 -e 0.1 -m 5 -l 3 -t hin2rom.tnt
Iteration 1 ...
First sequence comparision: 0-27 0-95 0-30 0-10 ... loss: 4
Train-set error = 1.8090
Iteration 2 ...
First sequence comparision: 120-46 86-86 63-63 120-120 95-95 123-123 10-10 ... loss: 1
Train-set error = 0.6560
Iteration 3 ...
First sequence comparision: 123-123 110-110 40-40 46-46 ... loss: 0
Train-set error = 0.3820
Iteration 4 ...
First sequence comparision: 2-2 95-95 86-86 77-77 64-64 31-31 120-120 80-80 10-10 ... loss: 0
Train-set error = 0.2240
Iteration 5 ...
First sequence comparision: 40-40 120-120 31-31 120-120 125-125 120-120 123-123 117-117 31-31 120-120 ... loss: 0
Train-set error = 0.1540

Testing ...

Assuming hin2rom.tnt was given as test-file, the output file will be generated with the name hin2rom.tnt.out.